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ABSTRACT

Within the forensic science community, there is a continued push to develop novel tools to aid in criminal investigations.
microRNA (miRNA) analysis has been the focus of many researcher’s attention in the biomedical field since its discovery in
1993; however, the forensic application of miRNA analysis has only been suggested within the last 10 years and has been
gaining considerable traction recently. The primary focus of the forensic application of miRNA analysis has been on body
fluid identification to provide confirmatory universal analysis of unknown biological stains obtained from crime scenes or
evidence items. There are, however, other forensic applications of miRNA profiling that have shown potential, yet are
largely understudied, and warrant further investigation such as organ tissue identification, donor age estimation, and
more. This review paper aims to evaluate the current literature and future potential of miRNA analysis within the forensic
science field.
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INTRODUCTION

microRNAs (miRNAs) are short, single-stranded, noncod-
ing RNAmolecules, typically 20–24 nt in length. The study
of miRNAs began with the finding of their functional ability
to regulateproteinproduction in 1993with thediscoveryof
lin-4 by Lee et al. (1993). Seven years later, the second
miRNA was discovered, let-7 (Pasquinelli et al. 2000), and
miRNAs were subsequently established as a new class of
riboregulators (Lagos-Quintana et al. 2001; Lau et al.
2001; Lee and Ambros 2001). Within the biomedical re-
search community, miRNA analysis truly came to fruition
when it was discovered that miRNAs play critical roles in a
wide variety of biological and pathological processes,
and that miRNAs were actually tissue-specific and could
provide a signature of disease (Calin et al. 2002; Ambros
2004; Bartel 2004; Lu et al. 2005; Etheridge et al. 2011;
Wegman and Krylov 2013). Since then there has been an
explosion of interest in miRNAs and their diverse and
wide-ranging capabilities within many disciplines of bio-
logical research. This research has mainly focused on clini-
cal biological samples, such as various tissues (cancer vs.
normal), cerebrospinal fluids, and cultured primary tissues.
Comparatively,minimal researchhas focusedon forensical-
ly relevant samples (e.g., body fluids, organ tissues, trace

deposits). The first suggestion of the forensic application
ofmiRNAswas in 2009, whenHanson et al. (2009) suggest-
ed their potential for forensic body fluid identification
(BFID). In the decade since, several researchers worldwide
have investigated the potential for the forensic application
ofmiRNAs. Despite the great promisemiRNAs have shown
in the last decade in terms of their forensic application, this
field still remains very much in its infancy and has not yet
been implemented inactive forensic investigationsoroper-
ational crime laboratory protocols. With the advancement
of molecular methodologies and the sophistication of the
techniques now used, miRNA profiling represents an ideal
tool to supplement the forensic scientist’s arsenal. Further
studies and validation, however, are very much warranted,
and required, in order to truly reveal the forensic potential
of miRNA profiling, and certainly to withstand the scrutiny
necessary for legal presentation in the courtroom.

BODY FLUID IDENTIFICATION

The identification of forensically relevant body fluids in a
forensic investigation can provide important and probative
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evidence. Unambiguously confirming the body fluid
source of a DNA profile is critical in forensic investigations
as it clarifies the circumstances of an act, aids in determin-
ing the sequence of events, confirms or refutes victims/
suspects/witness statements, and ultimately can provide
linkages between victim/perpetrator/scene. Although
there are both presumptive and confirmatory tests in rou-
tine practice for the commonly encountered forensically
relevant body fluids (e.g., blood, semen, saliva, and urine),
there are numerous limitations to these tests. Current BFID
tests are based on chemical, enzymatic, or immunological
reactions and typically have good sensitivity. However,
their specificity is limited, with many tests presenting
cross-reactivity with other body fluids, and they also pro-
duce a number of false positives (Virkler and Lednev
2009). Current tests, for the most part, are destructive to
a sample, which is a major concern when dealing with al-
ready trace amounts of sample, and sufficient sample is re-
quired for subsequent DNA profiling to identify the donor
of the body fluid. In addition, there are some body fluids,
such as vaginal material and menstrual blood, which are
greatly lacking in widely accepted protocols for their iden-
tification. Further to this, there is a great need for the de-
velopment of a universal body fluid test, thereby
eliminating the requirement to performmultiple individual
body fluid tests, and having, instead, one test for them all.

Last, in an effort to streamline forensic biology work pro-
cesses within operational crime laboratories, there is a
need for the development of amethod that also simultane-
ously contributes to the production of a DNA profile of the
donor of the body fluid. Therefore, a method in which the
sample preparation required for the body fluid test also
provides DNA content for profiling would greatly improve
the efficiency of the testing (see Fig. 1). In essence, the
“ideal” forensic BFID test would be sensitive, specific,
nondestructive, universal, and efficient.

Currently, there are significant efforts in the forensic sci-
ence research field to develop novel methods for the iden-
tification of body fluids, to address the challenges currently
faced. Previously, messenger RNA (mRNA) was thought to
be a suitable candidate for the identification of body fluids.
However, it was subsequently shown that mRNAs are sus-
ceptible to degradation and therefore are not always suit-
able for all forensically relevant samples—in particular,
those samples that have been exposed to harsh environ-
ments (Hall and Ballantyne 2004; Setzer et al. 2008;
Vennemann and Koppelkamm 2010; Haas et al. 2013;
Hall et al. 2014). MiRNAs, however, contain a wealth of in-
formation and are significantly more robust (Lee et al.
1993; Ambros 2001; Winter et al. 2009) than their mRNA
counterparts, because of their smaller size. The tissue spe-
cificity of miRNAs discovered in the biomedical field

FIGURE 1. Workflow for universal microRNA body fluid identification with simultaneous DNA profiling.
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sparked the idea that miRNAs could be utilized as markers
for body fluids in forensic investigations (Hanson et al.
2009; Courts andMadea 2010), whereby specific body flu-
ids would have specific miRNA signatures/expression pro-
files. Furthermore, forensic samples are often minute
traces, and therefore any test that consumes the sample
poses the risk of not having enough sample remaining af-
ter testing in order to obtain aDNAprofile. The total nucle-
ic acid content, however, can be extracted from a sample
by means of a coextraction, producing two fractions: the
DNA content and the total RNA component. This allows
efficient processing of forensic samples, with BFID and
DNA profiling occurring in parallel (Bauer and Patzelt
2003; Alvarez et al. 2004; Bowden et al. 2011; van der
Meer et al. 2013; Li et al. 2014; Watanabe et al. 2014).
Further to this, a recent study reports the ability to detect
miRNAs in DNA extracts obtained using commonly used
forensic DNA extraction methods (e.g., QIAamp DNA
Investigator Kit [QIAGEN]) without any modifications to
the protocols (Lewis et al. 2019). This highlights the ease
of implementation of miRNA profiling into current crime
laboratory workflows, whereby separate RNA extraction
or coextraction methods are not strictly necessary.
Moreover, potential exists for miRNA profiling to be per-
formed in cold case investigations, in which only DNA ex-
tracts remain from the original evidence item submitted.
Previous published studies reported promising results

identifying differentially expressed miRNAs with great po-
tential as novel biomarkers for forensic BFID (Hanson et al.
2009; Zubakov et al. 2010; Courts and Madea 2011; Wang
et al. 2013; Sauer et al. 2016; Seashols-Williams et al. 2016;

Sirker et al. 2017; Mayes et al. 2018; O’Leary and Glynn
2018; Tian et al. 2018). In the small number of studies pub-
lished in this area, however, there is little agreement be-
tween them, with only some miRNAs suggested as
potential biomarkers for specific fluids overlapping be-
tween studies (see Table 1).
The first to explore the forensic application of miRNAs

was Erin K. Hanson in 2009 (Hanson et al. 2009). At first, re-
searchers aimed to discover miRNAs that are specific to
one particular body fluid; however, research studies have
been unsuccessful in this search thus far (Hanson et al.
2009; Zubakov et al. 2010; Courts and Madea 2011;
Wang et al. 2013; Sauer et al. 2016; Seashols-Williams
et al. 2016; Sirker et al. 2017; Mayes et al. 2018; Tian
et al. 2018). However, Hanson et al. (2009) revealed nine
miRNAs that were sufficiently differentially expressed to
such a degree as to permit the identification of the partic-
ular body fluid. In addition, Hanson et al. (2009) revealed
that as little as 50 pg of total RNA was needed, highlight-
ing its utility with minute forensic samples. Zubakov et al.
(2010) screened a large set of 718 human miRNA markers
in forensically relevant body fluids, using themost compre-
hensive microarray platform available at that time. The re-
sults identified a number of candidate miRNAs for each
body fluid. However, upon further validation using reverse
transcription quantitative polymerase chain reaction
(RT-qPCR), only two miRNAs for blood and two for semen
were suggested as suitable for future forensic applications.
Furthermore, this study also revealed the time-wise stabil-
ity of miRNAs over 1 year in ambient laboratory conditions
and also the sensitivity of this technique, as reliable marker

TABLE 1. miRNAs identified in the literature as showing potential as a biomarker for individual body fluids

Body fluid
Mayes et al.

(2018)
Sirker et al.

(2017)

Seashols-
Williams

et al. (2016)
Sauer et al.

(2016) Wang et al. (2013)

Courts and
Madea
(2011)

Zubakov
et al. (2010)

Hanson
et al. (2009)

Venous blood miR-142-3p,
miR-451

miR-16,
miR-451

miR-200b miR-144-3p,
miR-144-5p,
miR-451a

miR-16, miR-486 miR-126,
miR-150,
miR-451

miR-20a,
miR-106a,
miR-185,
miR-144

miR-16,
miR-451

Menstrual blood miR-141-3p,
miR-412-3p

miR-185,
miR-412-3p

miR-200b miR-144-3p,
miR-144-5p,
miR-451a

miR-214 – miR-144,
miR-185

miR-412,
miR-451

Semen miR-10b,
miR-891a

miR-10b,
miR-943

miR-891a miR-10a,
miR-10b,
miR-135a

miR-888, miR-891a miR-200,
miR-203,
miR-205

miR-10a,
miR-135a,
miR-507,
miR-943,
miR-891a

miR-10b,
miR-135b

Saliva miR-205 miR-124,
miR-203,
miR-205

miR-26b – miR-138 – miR-208b,
miR-518c,
miR-583

miR-205,
miR-658

Vaginal material – miR-1280,
miR-4286

– – – – miR-617,
miR-891a

miR-124a,
miR-891a

(–) Not studied/none found.
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detection was obtained with just picograms of starting
material.

Wang et al. (2013) published a table illustrating some of
the previous miRNA findings for particular body fluids in
their research and other groups. Wang et al. performed
an array that examined 754 human-specific miRNAs.
Currently, the total count of discovered miRNAs that iden-
tify with Homo sapiens is ∼2700 according to the miRBase
registry (release 22, accessed March 2019). Another data-
base/registry, called MirGeneDB, compiled using primary
high-throughput sequencing data, currently lists only 556
authentic human miRNA genes (Fromm et al. 2015). It
could be suggested that perhaps a truly body fluid–specif-
ic miRNA has simply not yet been realized; however, by
comparing both registries and considering only the au-
thentic miRNAs, it appears that only a small number of
new human miRNAs have been identified in the last de-
cade. Therefore, it is unlikely that a new truly body fluid–
specific miRNA that would have sufficient expression to
enable quantification will be realized.

Although the discovery of truly specific miRNAs to indi-
vidual body fluids would be of great benefit, it is reason-
able to assume that the differential expression of multiple
miRNA targets would provide BFID with sufficient accura-
cy. Sauer et al. (2016) published a comprehensive study
using a thoroughly validated, state-of-the-art qPCR proce-
dure and reported four miRNAs that were shown to be
useful for differentiation. This study expanded further by
using a decision algorithm to detect each of the five
body fluids by using as few markers as possible to simplify
the analysis procedure. The results, however, were not as
discriminatory as expected, highlighting the fact that a
panel of miRNAs for each body fluid is truly needed.
RT-qPCR is currently the method of choice for differential
expression analysis of individual miRNA targets. However,
to ensure reliable detection and expression analysis of
miRNAs for forensic BFID, it is essential that proper nor-
malization strategies using endogenous controls are
used. Sirker et al. (2017) identified four miRNAs as the
most stably expressed across the set of samples and
that, therefore, could act as potential endogenous con-
trols. Further to this, five miRNAs were reported to be suc-
cessful in the differentiation of six different cell types/
body fluids, using the previously identified endogenous
controls to normalize the qPCR data. However, this
study was not able to differentiate between venous and
menstrual blood, which would be preferable for forensic
applications. This study further highlighted the lack
of exclusive marker specificity for one body fluid and a
simple interpretation method. Both Sauer et al. (2016)
and Sirker et al. (2017) stressed the importance, and
benefits of, interlaboratory trials using a set of ubiquitous-
ly used markers to better assess the experimental ap-
proach and ultimately its suitability for forensic casework
implementation.

Seashols-Williams et al. (2016) published the first report
of forensically relevant body fluids subjected to next-
generation sequencing (NGS) using the Illumina Hi-Seq
platform. Also, Wang et al. (2016) reported small RNA se-
quencing of blood and saliva using the Ion Personal
Genome Machine System (Wang et al. 2016). Seashols-
Williams et al. (2016) provided a very comprehensive and
well-designed study that examined every step in the work-
flow. The authors identified a suitable RNA extraction pro-
cedure for forensically relevant body fluids and suitable
endogenous controls for normalization in RT-qPCR, and
they produced a large data set, with the consequent devel-
opment of candidate miRNAs for further research. More
recently, Dørum et al. (2019) applied whole miRNome
massively parallel sequencing to six forensically relevant
body fluids. Their findings were in agreement with those
of Seashols-Williams et al., in particular with regard to
the reference miRNA markers.

Once panels of miRNAs markers are identified and val-
idated for BFID, it will be crucial to apply appropriate
statistical methods to the data analysis. Validated multi-
variate statistical methods are certainly required for the
analysis of differentially expressed miRNAs using RT-
qPCR. The ΔCT/ΔΔCT methods are typically used in rela-
tive quantification (RQ) studies. Many of these studies re-
port using one-way ANOVA and independent two-
sample t-tests to determine association and comparisons
between individual body fluids and to assess significance
(Courts and Madea 2011; Hanson and Ballantyne 2013; Li
et al. 2017). Dørum et al. (2019) reported using partial
least squares (PLS) and linear discriminant analysis (LDA)
to predict body fluids and also identified a minimum
number of miRNA markers that will still provide good pre-
diction accuracy. Other statistical approaches have been
applied, such as that of Hanson et al. (2014), who devel-
oped a quantitative statistical model using logistic regres-
sion to predict menstrual blood and reported a high, and
measurable, degree of accuracy.

Although they are few, the previous research studies
have highlighted the potential of miRNA markers for the
identification of forensically relevant body fluids. However,
further research is required to identify panels of unambig-
uous markers for each of the forensically relevant body flu-
ids. Although the research studies discussed here
contribute greatly to the growing body of knowledge on
this topic, there is yet more research to be performed,
however, and it must be assessed if results previously ob-
tained are reproducible using different platforms and ap-
proaches. Further to this, some forensically relevant body
fluids have been less extensively explored (e.g., vaginal
fluid and menstrual blood). With further research, the po-
tential of miRNAs for forensic BFID continues to grow.
Should this novel method one day be implemented into
routine casework, it will address current challenges en-
countered in body fluid testing by creating a sensitive,
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specific, universal test for BFID, which will also allow for the
coextraction of both the DNA and RNA content in one pro-
cess, thereby streamlining workflow processes and ulti-
mately forensic practice.

ORGAN TISSUE IDENTIFICATION

Similar to BFID, the identification of certain internal organ
tissues can yield valuable probative evidence in the in-
vestigation of a violent crime. During a violent act, inter-
nal organ tissue may be transferred from the victim to the
perpetrator, to the weapon or innocuous item present, or
to the location/scene at which the crime is being commit-
ted. Internal organ tissues may adhere to a bullet passing
through a body or to a knife that has penetrated the skin.
In certain circumstances, identifying the organ tissue
source of a DNA profile obtained from an evidence
item, such as a knife blade or a bullet, confirms the role
that evidence item played in the crime being investigat-
ed. Furthermore, the ability to identify organ tissues in
trace deposits of biological material located at scenes
(e.g., in the plumbing or sewers of a building) can provide
investigative leads to the possibility that the human re-
mains have been removed to another location or the dis-
memberment or disposition of human remains at that
location. Currently, there are no standard molecular oper-
ating procedures for organ tissue identification used in
routine casework at operational crime laboratories.
Investigators are limited to simply identifying the DNA
profile of the donor of the specimen on the evidence
item and can only suggest possible organ tissue sources
of the DNA. If organ tissue identification was deemed
crucial to an investigation, the sample would likely be
sent out for cellular/histological analysis to either the
Office of the Chief Medical Examiner (OCME) (only in
the United States), State Pathologist, or to an external bi-
ological analysis company, where immunohistochemical
analyses would likely be performed. Other traditional
methods, using immunological and enzymatic processes,
have previously been suggested as viable tools for this
purpose, although none ever gained traction within the
forensic science industry (Kimura et al. 1995; Takahama
1996; Seo et al. 1997; Takata et al. 2004). The most con-
founding limitation of all of the traditional methods is that
they require a relatively large sample size that is in near-
pristine condition. In forensic investigations, specimens
are often minute in size and heavily degraded; therefore,
these traditional methods are not ideally suited for foren-
sic use.
In recent years, moremolecular-basedmethods, such as

mRNA and DNA methylation analysis, for organ tissue
identification have been suggested as viable tools, with
some researchers producing promising results (Hanson
and Ballantyne 2017; van den Berge and Sijen 2017;
Samsuwan et al. 2018). As miRNAs have shown great

promise for BFID, it is logical to infer that same potential
to their use for organ tissue identification, in particular
because of the miRNA’s robustness and ability to with-
stand degradation. Sauer et al. (2017) published the first
report of the use of miRNA markers for the identification
of brain, kidney, liver, lung, skin, heart muscle, and skeletal
muscle. The researchers provided a comprehensive inves-
tigation by performing RT-qPCR of 15 preselected
miRNAs on not just pristine samples, but also mixed,
aged, and degraded samples. Further to this, the research-
ers generated samples from mock stabbings and shoot-
ings to ensure the robustness of this method to realistic
forensic specimens. Although the study identified individ-
ual miRNAs that were differentially expressed and there-
fore showed potential as novel biomarkers for individual
organ tissues, it was noted that multiple miRNAs or panels
of miRNAs are advisable for the inference of certain tis-
sues. The authors also note that further research should
comprise larger sample sets and an expansion of the or-
gans investigated, even suggesting organ subsections.
However, this study provides a strong foundation from
which further research into this novel application of
miRNAs can now be explored.

OTHER POTENTIAL FUTURE APPLICATIONS

In the biomedical field, human aging is an area of great in-
terest, in particular with regard to identifying diagnostic
predictors of age-associated diseases, such as cancer.
There is potential to translate the findings of biomedical
research studies to forensic applications for estimating
the age of a donor of a particular biological sample using
miRNA analysis. Noren Hooten et al. (2010) profiled 800
miRNAs in both young (∼30 yr) and old (∼64 yr) cohorts,
and reported that the majority of miRNAs decreased in
abundance with age. This suggests that changes in
miRNA expression could have potential as an indicator of
the age of the donor. Similarly, determining the age of
the actual stain—or as it is more commonly known, the
time since deposition (TSD)—is often questioned in foren-
sic investigations, as it could relate to the stain’s relevance
to the crime and also to determining the sequence of
events. mRNAs were previously investigated as a potential
tool for this purpose (Anderson et al. 2005); however, the
wide range and instability of mRNA suggests this may
not be an effective tool. One study reported three
miRNAs (Mohammed et al. 2018) to steadily and signifi-
cantly increase over time, whereas another (Alshehhi and
Haddrill 2019) investigated the use of both mRNA and
miRNA markers and reported that each marker exhibited
a unique degradation profile over a 1-yr time period.
Although these results are promising, further research is
certainly required to assess the impact of environmental in-
sults. Last, postmortem interval (PMI) estimation has re-
cently been suggested as a novel application of miRNA
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analysis. PMI is defined as the period of time elapsed from
the time of death. Currently, a variety of methods are used
to estimate PMI (e.g., physical, physiochemical, biochem-
ical, microbiological, entomological, and botanical pro-
cesses) (Henssge and Madea 2007); however, none are
absolute. The degradation of nucleic acids (both DNA
and RNA) have been well-studied, and it recently has
been suggested that nucleic acids could be ideal biomark-
ers of PMI (Di Nunno et al. 1998; Bauer et al. 2003; Liu et al.
2007; Sampaio-Silva et al. 2013; Scrivano et al. 2019). Both
miRNAs and circulating RNAs (circRNAs) have shown satis-
factory stability across a range of tissue types in the post-
mortem interval, highlighting that miRNAs are less
susceptible to their environmental conditions and there-
fore suitable as stable reference genes (Tu et al. 2019).
Although the results of this research are promising, there
are many variables to be considered in estimating
PMI, which are much more complex in real-life scenarios
with humans than in laboratory conditions using animal
models.

POTENTIAL LIMITATIONS

ShouldmiRNAprofiling be implemented into routine prac-
tice within forensic investigations, it is crucial that it is ro-
bust enough to handle the challenges that forensic
samples typically bring (e.g., nonpristine environmentally
damaged samples). Proteins, as well as nucleic acids,
have all been found to degrade, lose conformation, and,
subsequently, lose function over time. These processes
are shown to be accelerated when exposed to various en-
vironmental insults (Pfeifer et al. 2005; Alaeddini et al.
2010). Some of these are, but not necessarily limited
to, prolonged ultraviolet light exposure (Hall and
Ballantyne 2004; Hall et al. 2014), excessive heat exposure
(Lindahl and Nyberg 1974), water/moisture (Marrone and
Ballantyne 2009, 2010), and various forms of chemical/en-
zymatic damage (Gates 2009). Various studies over the last
decade have elucidated the nature of some of the damage
mechanisms associated with biological evidence (Hall and
Ballantyne 2004; Gates 2009; Marrone and Ballantyne
2009, 2010; Hall et al. 2014). DNA damage with regard
to forensic specimens has been widely studied; various
methods exist that attempt to repair various forms of
DNA damage (Evans and Nichols 2008; Diegoli et al.
2012; Ambers et al. 2014; Robertson et al. 2014; Wallace
2014). Little is known, however, with regard to miRNA
damage—in particular, with forensic specimens. There
has been no published research to date that investigates
the impact of damage on the RNA content of forensically
relevant body fluids—more specifically the miRNA con-
tent—nor has there been any published research that ex-
plores the ability to “repair” the damaged RNA content
of forensically relevant body fluids.

Uniformity and acceptance of methods across research
studies has certainly presented limitations to date. The
lack of agreement in the studies discussed previously
(Table 1) could certainly be as a result of the variety of
methods used across them. It is imperative that uniform
and agreed-on methods are utilized on a global level, to
ensure data obtained from different research groups or
crime laboratories can be reliably compared. This includes
agreement on the starting sample volume and concentra-
tion, the method of extraction and subsequent quantifica-
tion, followed by the method of amplification and target
analysis, and concluding with statistical/interpretation
analysis to be performed. As miRNA research has pro-
gressed in the biomedical field, the RT-qPCR technique
has become the gold standard for the analysis of individual
miRNA targets, because of its ease of use and the robust-
ness of the technique (Ach et al. 2008; Zubakov et al. 2010;
Omelia et al. 2013; Sauer et al. 2016). NGS, however, has
recently gained widespread attention for miRNA analysis.
NGS for small RNAs allows the sequencing of small RNA
species with unprecedented sensitivity and dynamic
range. It is possible to discover novel miRNAs and also ex-
amine differential expression of all small RNAs in a sample.
It has been suggested that NGS platforms will be standard
instrumentation in crime laboratories in the future, as the
advantages are many, in addition to their modes of appli-
cations within the forensic science discipline. As a result, all
available NGS platforms must be investigated and com-
pared to ensure the most appropriate platform is imple-
mented. As stated previously, the ultimate goal is to
identify panels of miRNAs for each individual body fluid
to be used for identification; therefore, RT-qPCR may not
be the ideal approach as multiple multiplexes and con-
sumption of the samplewould be required. NGS, although
costly, would provide a more comprehensive, yet stream-
lined approach, because of its multiplexing nature and
the ease of interrogating the whole or a large subset of
the miRNAome.

Last, it is the author’s opinion that there are three further
reasons that contribute to keeping the forensic application
of miRNAs from progressing to the level it deserves. First,
there is a limited amount of funding provided for forensic
science research applications, with novel research associ-
ated with forensic DNA profiling for person identification
purposes often taking precedence over RNA profiling ap-
plications. Second, the required expertise in the area of
miRNA analysis is predominantly focused in the biomedi-
cal/clinical field. Until sufficient funding is provided to
the RNA-based forensic science discipline, however, it re-
mains difficult to attract talented researchers to contribute
to fields of study such as this. Last, the lack of commercially
available kits and reagents designed specifically for foren-
sic use is a further impediment to the implementation of
miRNA and other RNA technologies in forensic casework
applications.
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CONCLUSION

Although microRNA expression analysis is being widely
explored the world over, this exploration has focused pre-
dominantly on its application to the biomedical/cancer re-
search field. To truly reveal the full potential of miRNAs
within the forensic field, it is crucial to unravel the molecu-
lar complexities of the samples at hand. The implementa-
tion of miRNA analysis into the forensic workflow as
described above would serve to address several challeng-
es currently faced by forensic scientists. By being able to
establish robust performance under adverse conditions it
allows for the reliable access to information that was not
previously possible. It is time to move the state of the art
forward, by addressing current challenges with new tools,
thus allowing forensic scientists to harvest more layers of
information frombiological evidence. Asmentioned previ-
ously, the forensic application of microRNA analysis is only
just being realized. As a result, published research in this
area is limited, yet growing. With the diverse array of
forensic applications for miRNA analysis it is possible to pi-
oneer novel approaches to physical evidence. In forensic
science, methods that once seemed state-of-the-art, now
are becoming antiquated. It is crucial that researchers
work toward developing techniques for use in forensic in-
vestigations that produce results in record time, providing
higher powers of discrimination, and that are sufficiently
robust to gain acceptance by both the scientific communi-
ty and, of course, the courtroom.
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